Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zootaxa ; 5419(2): 151-188, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38480330

RESUMO

Xenophyophores are large, agglutinated foraminifera that dominate the benthic megafauna in some parts of the deep sea. Here, we describe an assemblage of largely fragmentary specimens from the Clarion-Clipperton Zone (CCZ), an area of the eastern abyssal Pacific hosting large, commercially significant deposits of polymetallic nodules. We recognised 18 morphospecies of which eight yielded DNA sequences. These include two new genera and three new species, Claraclippia seminuda gen. & sp. nov., Stereodiktyoma mollis gen. & sp. nov., and Aschemonella tani sp. nov., three that are assigned to known species, Abyssalia foliformis, Aschemonella monilis and Shinkaiya contorta, and two assigned to open nomenclature forms Abyssalia aff. foliformis and Stannophyllum aff. granularium. An additional ten forms are represented only by morphology. The following seven are placed in known genera, species and open-nomenclature forms: Aschemonella? sp., Homogammina sp., Psammina multiloculata, P. aff. multiloculata, P. aff. limbata form 1 sensu Gooday et al., 2018, P. aff. limbata form 2 sensu Gooday et al., 2018, and Stannophyllum spp. The other three could not be identified to genus level. This new collection brings the total of described and undescribed species and morphotypes from the CCZ to 27 and 70, respectively, reinforcing the already high diversity of xenophyophores known from this part of the Pacific.


Assuntos
Foraminíferos , Poecilia , Animais , Foraminíferos/genética
2.
Sci Rep ; 13(1): 7181, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137936

RESUMO

Paleodictyon is one of the most iconic and widespread of trace fossils in the geological record. However, modern examples are less well known and restricted to deep-sea settings at relatively low latitudes. Here, we report the distribution of Paleodictyon at six abyssal sites near the Aleutian Trench. This study reveals for the first time the presence of Paleodictyon at Subarctic latitudes (51°-53°N) and at depths over 4500 m, although the traces were not observed at stations deeper than 5000 m suggesting that there is some bathymetric constraint for the trace maker. Two small Paleodictyon morphotypes were recognized (average mesh size of 1.81 cm), one having a central hexagonal pattern, the other being characterized by a non-hexagonal pattern. Within the study area, Paleodictyon shows no apparent correlation with local environmental parameters. Finally, based on a worldwide morphological comparison, we conclude that the new Paleodictyon specimens represent distinct ichnospecies that are associated with the relatively eutrophic conditions in this region. Their smaller size may reflect this more eutrophic setting in which sufficient food can be obtained from a smaller area in order to satisfy the energetic requirements of the tracemakers. If so, then Paleodictyon size may provide some assistance when interpreting paleoenvironmental conditions.


Assuntos
Fósseis
3.
Eur J Protistol ; 86: 125932, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36347189

RESUMO

Single-chambered (monothalamous) foraminifera are poorly known compared to their multichambered relatives. In this first study of monothalamids from Greenland, we describe one new genus and two new species belonging to different clades from the Nuuk fjord system. Nujappikia idaliae Gooday & Holzmann gen. nov. sp. nov. (Clade Y) has a bottle-shaped test terminating in a single aperture located on a short neck. The flexible wall is basically organic but with a very fine agglutinated veneer. Bathyallogromia kalaallita Gooday & Holzmann sp. nov. (Clade C) has a broadly ovate test with an organic wall and a mound-like apertural structure. It is larger and genetically distinct from the two other Bathyallogromia species, both from the Southern Ocean. A survey of the morphological diversity of monothalamids in our samples revealed 49 morphospecies, of which 19, including the two new species, yielded DNA sequences. Five were assigned to the genera Bathysiphon, (Clade BM), Micrometula. (Clade BM), Psammophaga. (Clade E), Hippocrepinella (Clade D) and Crithionina (Clade J). The remaining twelve represented unknown taxa branching in clades A, C, F, and Y and one new clade. Our results add to growing evidence that monothalamids are common and diverse in fjords and other high-latitude settings.


Assuntos
Foraminíferos , Rhizaria , Foraminíferos/genética , Rhizaria/genética , Groenlândia , Filogenia , Análise de Sequência de DNA
4.
Eur J Protistol ; 85: 125909, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35907388

RESUMO

Based on molecular and morphological data, we describe three new genera and four new species of monothalamids from the sublittoral zone (21-250 m) in South Georgia fjords that belong to different monothalamid clades. Limaxia alba gen. nov. sp. nov. (Clade A) has an elongate, subcylindrical test, 359-688 µm long, with some detritus attached to the organic wall. Hilla argentea gen. nov. sp. nov. (Clade Y) has a cylindrical, finely agglutinated test, 535-755 µm long. Pseudoconqueria lenticularis gen. nov. sp. nov. branches separately. It has a spindle-shaped, finely agglutinated test, 280-574 µm long. Bathyallogromia olivacea sp. nov. (Clade C) has an ovate organic-walled test, 369-433 µm long. We present the first genetic data on two monothalamid species originally described from South Georgia, Hippocrepinella alba (Clade C) and Hippocrepinella hirudinea (Clade D), as well as a single sequence for C. delacai (Clade J) originally described from McMurdo Sound, Antarctica. In addition, we report nine undescribed species branching in six different monothalamid clades (A, B, BM, C, J, Y), eight of them sampled around South Georgia and one collected from the Falkland Islands near Stanley.


Assuntos
Foraminíferos , Regiões Antárticas , Ilhas Malvinas , Foraminíferos/genética , Filogenia
5.
Mol Phylogenet Evol ; 174: 107546, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35690380

RESUMO

Foraminifera, classified in the supergroup Rhizaria, are a common and highly diverse group of mainly marine protists. Despite their evolutionary and ecological importance, only limited genomic data (one partial genome and nine transcriptomic datasets) have been published for this group. Foraminiferal molecular phylogeny is largely based on 18S rRNA gene sequence analysis. However, due to highly variable evolutionary rates of substitution in ribosomal genes plus the existence of intragenomic variation at this locus, the relationships between and within foraminiferal classes remain uncertain. We analyze transcriptomic data from 28 species, adding 19 new species to the previously published dataset, including members of the strongly under-represented class Monothalamea. A phylogenomic reconstruction of Rhizaria, rooted with alveolates and stramenopiles, based on 199 genes and 68 species supports the monophyly of Foraminifera and their sister relationship to Polycystinea. The phylogenomic tree of Foraminifera is very similar to the 18S rRNA tree, with the paraphyletic single-chambered monothalamids giving rise to the multi-chambered Tubothalamea and Globothalamea. Within the Monothalamea, our analyses confirm the monophyly of the giant, deep-sea xenophyophores that branch within clade C and indicate the basal position of monothalamous clades D and E. The multi-chambered Globothalamea are monophyletic and comprise the paraphyletic Textulariida and monophyletic Rotaliida. Our phylogenomic analyses support major evolutionary trends of Foraminifera revealed by ribosomal phylogenies and reinforce their current higher-level classification.


Assuntos
Foraminíferos , Rhizaria , Evolução Biológica , Foraminíferos/genética , Filogenia , RNA Ribossômico 18S/genética , Rhizaria/genética , Transcriptoma
6.
Sci Adv ; 8(5): eabj9309, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119936

RESUMO

Remote deep-ocean sediment (DOS) ecosystems are among the least explored biomes on Earth. Genomic assessments of their biodiversity have failed to separate indigenous benthic organisms from sinking plankton. Here, we compare global-scale eukaryotic DNA metabarcoding datasets (18S-V9) from abyssal and lower bathyal surficial sediments and euphotic and aphotic ocean pelagic layers to distinguish plankton from benthic diversity in sediment material. Based on 1685 samples collected throughout the world ocean, we show that DOS diversity is at least threefold that in pelagic realms, with nearly two-thirds represented by abundant yet unknown eukaryotes. These benthic communities are spatially structured by ocean basins and particulate organic carbon (POC) flux from the upper ocean. Plankton DNA reaching the DOS originates from abundant species, with maximal deposition at high latitudes. Its seafloor DNA signature predicts variations in POC export from the surface and reveals previously overlooked taxa that may drive the biological carbon pump.

7.
PeerJ ; 10: e12884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211360

RESUMO

We present new observations on Jullienella foetida Schlumberger, 1890, a giant agglutinated foraminifer with a leaf- or fan-like test reaching a maximum dimension of 14 cm, that is common on some parts of the west African continental shelf. The test wall comprises a smooth, outer veneer of small (<10 µm) mineral grains that overlies the much thicker inner layer, which has a porous structure and is composed of grains measuring several hundreds of microns in size. Micro-CT scans suggest that much of the test interior is filled with cytoplasm, while X-ray micrographs reveal an elaborate system of radiating internal partitions that probably serve to channel cytoplasmic flow and strengthen the test. Jullienella foetida resembles some xenophyophores (giant deep-sea foraminifera) in terms of test size and morphology, but lacks their distinctive internal organization; the similarities are therefore likely to be convergent. Based on micro-CT scan data, we calculated an individual cytoplasmic biomass of 3.65 mg wet weight for one specimen. When combined with literature records of seafloor coverage, this yielded an estimate of >7.0 g wet weight m-2 for the seafloor biomass of J. foetida in areas where it is particularly abundant. The relatively restricted distribution of this species off the north-west African coast at depths above 100 m is probably related to the elevated, upwelling-related surface productivity along this margin, which provides enough food to sustain this high biomass. This remarkable species appears to play an important, perhaps keystone, role in benthic ecosystems where it is abundant, providing the only common hard substrate on which sessile organisms can settle.


Assuntos
Ecossistema , Foraminíferos , Água , Oceanos e Mares , Biomassa
8.
Integr Environ Assess Manag ; 18(3): 655-663, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34019727

RESUMO

Deep-sea biodiversity, a source of critical ecological functions and ecosystem services, is increasingly subject to the threat of disturbance from existing practices (e.g., fishing, waste disposal, oil and gas extraction) as well as emerging industries such as deep-seabed mining. Current scientific tools may not be adequate for monitoring and assessing subsequent changes to biodiversity. In this paper, we evaluate the scientific and budgetary trade-offs associated with morphology-based taxonomy and metabarcoding approaches to biodiversity surveys in the context of nascent deep-seabed mining for polymetallic nodules in the Clarion-Clipperton Zone, the area of most intense interest. For the dominant taxa of benthic meiofauna, we discuss the types of information produced by these methods and use cost-effectiveness analysis to compare their abilities to yield biological and ecological data for use in environmental assessment and management. On the basis of our evaluation, morphology-based taxonomy is less cost-effective than metabarcoding but offers scientific advantages, such as the generation of density, biomass, and size structure data. Approaches that combine the two methods during the environmental assessment phase of commercial activities may facilitate future biodiversity monitoring and assessment for deep-seabed mining and for other activities in remote deep-sea habitats, for which taxonomic data and expertise are limited. Integr Environ Assess Manag 2022;18:655-663. © 2021 SETAC.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Mineração , Inquéritos e Questionários
9.
Biodivers Data J ; 9: e69955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720635

RESUMO

BACKGROUND: The growing interest in mineral resources of the deep sea, such as seafloor massive sulphide deposits, has led to an increasing number of exploration licences issued by the International Seabed Authority. In the Indian Ocean, four licence areas exist, resulting in an increasing number of new hydrothermal vent fields and the discovery of new species. Most studies focus on active venting areas including their ecology, but the non-vent megafauna of the Central Indian Ridge and South East Indian Ridge remains poorly known.In the framework of the Indian Ocean Exploration project in the German license area for seafloor massive sulphides, baseline imagery and sampling surveys were conducted yearly during research expeditions from 2013 to 2018, using video sledges and Remotely Operated Vehicles. NEW INFORMATION: This is the first report of an imagery collection of megafauna from the southern Central Indian- and South East Indian Ridge, reporting the taxonomic richness and their distribution. A total of 218 taxa were recorded and identified, based on imagery, with additional morphological and molecular confirmed identifications of 20 taxa from 89 sampled specimens. The compiled fauna catalogue is a synthesis of megafauna occurrences aiming at a consistent morphological identification of taxa and showing their regional distribution. The imagery data were collected during multiple research cruises in different exploration clusters of the German licence area, located 500 km north of the Rodriguez Triple Junction along the Central Indian Ridge and 500 km southeast of it along the Southeast Indian Ridge.

10.
Sci Rep ; 11(1): 19869, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615927

RESUMO

The Antarctic coastal fauna is characterized by high endemism related to the progressive cooling of Antarctic waters and their isolation by the Antarctic Circumpolar Current. The origin of the Antarctic coastal fauna could involve either colonization from adjoining deep-sea areas or migration through the Drake Passage from sub-Antarctic areas. Here, we tested these hypotheses by comparing the morphology and genetics of benthic foraminifera collected from Antarctica, sub-Antarctic coastal settings in South Georgia, the Falkland Islands and Patagonian fjords. We analyzed four genera (Cassidulina, Globocassidulina, Cassidulinoides, Ehrenbergina) of the family Cassidulinidae that are represented by at least nine species in our samples. Focusing on the genera Globocassidulina and Cassidulinoides, our results showed that the first split between sub-Antarctic and Antarctic lineages took place during the mid-Miocene climate reorganization, probably about 20 to 17 million years ago (Ma). It was followed by a divergence between Antarctic species ~ 10 Ma, probably related to the cooling of deep water and vertical structuring of the water-column, as well as broadening and deepening of the continental shelf. The gene flow across the Drake Passage, as well as between South America and South Georgia, seems to have occurred from the Late Miocene to the Early Pliocene. It appears that climate warming during 7-5 Ma and the migration of the Polar Front breached biogeographic barriers and facilitated inter-species hybridization. The latest radiation coincided with glacial intensification (~ 2 Ma), which accelerated geographic fragmentation of populations, demographic changes, and genetic diversification in Antarctic species. Our results show that the evolution of Antarctic and sub-Antarctic coastal benthic foraminifera was linked to the tectonic and climatic history of the area, but their evolutionary response was not uniform and reflected species-specific ecological adaptations that influenced the dispersal patterns and biogeography of each species in different ways.


Assuntos
Evolução Biológica , Mudança Climática , Foraminíferos , Dinâmica Populacional , Regiões Antárticas , Teorema de Bayes , Foraminíferos/classificação , Foraminíferos/genética , Variação Genética , Genética Populacional , Oceanos e Mares , Filogenia
12.
Commun Integr Biol ; 13(1): 189-197, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33312334

RESUMO

Xenophyophores, giant deep-sea agglutinated foraminifera, dominate the benthic megafauna in the eastern equatorial Pacific Clarion-Clipperton Zone. This abyssal (>4000 m depth) region hosts major deposits of polymetallic nodules targeted for future seabed mining, an activity that would destroy these highly diverse and delicate protists, particularly those living on the nodules themselves. Since the cell occupies only a small proportion of their test volume, xenophyophores may make a fairly modest contribution to benthic biomass and carbon cycling. Nevertheless, xenophyophore tests can passively enhance particle deposition, concentrate food, and provide habitat structure utilized by diverse organisms. Their destruction could therefore influence the recovery of benthic communities. Species requiring nodule substrates will likely not recover, since nodules take millions of years to form. However, xenophyophores can grow quickly and colonize extensive volcanic ash deposits within years, suggesting that sediment-dwelling species could be among the first large immobile organisms to reappear in mining-impacted areas.

13.
Eur J Protistol ; 75: 125721, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32575029

RESUMO

The dark ocean and the underlying deep seafloor together represent the largest environment on this planet, comprising about 80% of the oceanic volume and covering more than two-thirds of the Earth's surface, as well as hosting a major part of the total biosphere. Emerging evidence suggests that these vast pelagic and benthic habitats play a major role in ocean biogeochemistry and represent an "untapped reservoir" of high genetic and metabolic microbial diversity. Due to its huge volume, the water column of the dark ocean is the largest reservoir of organic carbon in the biosphere and likely plays a major role in the global carbon budget. The dark ocean and the seafloor beneath it are also home to a largely enigmatic food web comprising little-known and sometimes spectacular organisms, mainly prokaryotes and protists. This review considers the globally important role of pelagic and benthic protists across all protistan size classes in the deep-sea realm, with a focus on their taxonomy, diversity, and physiological properties, including their role in deep microbial food webs. We argue that, given the important contribution that protists must make to deep-sea biodiversity and ecosystem processes, they should not be overlooked in biological studies of the deep ocean.


Assuntos
Organismos Aquáticos/classificação , Eucariotos/classificação , Foraminíferos/classificação , Animais , Organismos Aquáticos/fisiologia , Eucariotos/fisiologia , Foraminíferos/fisiologia , Oceanos e Mares
14.
Eur J Protistol ; 75: 125715, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32585572

RESUMO

The Clarion-Clipperton Zone (CCZ) occupies a vast swathe of the Pacific with extensive polymetallic nodule deposits. Eastern and central parts host diverse assemblages of xenophyophores (megafaunal agglutinated foraminifera). Here we describe xenophyophores obtained using a Remotely Operated Vehicle from the western CCZ. Eleven distinct forms include two known species, Stannophyllum zonarium Haeckel, 1888 and Aschemonella monile Gooday and Holzmann in Gooday et al., 2017b. Another four are described as new species based on morphological and genetic data. In Abyssalia foliformis gen. nov., sp. nov. and Abyssalia sphaerica sp. nov. the flattened or spherical test comprises a homogeneous framework of sponge spicules. Psammina tenuis sp. nov. has a delicate, thin, plate-like test. Moanammina semicircularis gen. nov., sp. nov. has a stalked, fan-shaped test and is genetically identical to 'Galatheammina sp. 6' of Gooday and co-workers from the eastern CCZ. Sequence data revealed a spherical 'mudball', which disintegrated and cannot be formally described, to be a novel xenophyophore. Finally, four morphospecies are represented by dead tests: Psammina spp., Reticulammina sp., and an unknown genus with a unique test structure. This collection enhances our knowledge of Pacific xenophyophore diversity and provides the first genetic confirmation of wide geographic ranges for abyssal species.


Assuntos
Foraminíferos/classificação , Animais , Biodiversidade , DNA de Protozoário/genética , Foraminíferos/citologia , Foraminíferos/genética , Oceano Pacífico , Especificidade da Espécie
15.
PeerJ ; 7: e6642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923656

RESUMO

We describe a new agglutinated monothalamous foraminiferal species, Capsammina crassa sp. nov., based on integrated observations of the test morphology and the chemical characteristics of materials composing the test. The new species was found at a depth of <60 m on the East coast of Korea. The test morphology is typical of the genus Capsammina, comprising two or more mica plates with a ring of finely agglutinated mineral grains sandwiched between them and surrounding the cell body. There is no distinct test aperture. Elemental analyses of the agglutinated grains revealed 15 different types of mineral grains of which quartz is the most abundant. The surface areas of grains exposed on fractured surfaces ranged from 1.6 to 7,700 µm2 and the large plate-like grains forming the upper and lower surfaces measured about 420-2,350 µm in maximum width. The new species is morphologically similar to C. patelliformis, however, the differences in size, distribution area and depth support that these two species are distinct. This discovery is the first record of the genus Capsammina from the North Pacific. Therefore, it extends the biodiversity and geographical distribution of the genus Capsammina, which has been reported only from the bathyal NE Atlantic. Our finding also suggests the possibility of additional discovery of monothalamous foraminifera from around Korea.

16.
Protist ; 169(6): 926-957, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30453273

RESUMO

Xenophyophores are important megafaunal organisms in the abyssal Clarion-Clipperton Zone (CCZ; equatorial Pacific), a region hosting commercially significant deposits of polymetallic nodules. Previous studies assigned those with attached, fan-like tests to Psammina limbata, a species described from the central CCZ based on morphology. Here, we redescribe the holotype of P. limbata and then show that limbata-like morphotypes collected in the eastern CCZ include three genetically distinct species. Psammina aff. limbata is closest morphologically to P. limbata. The others are described as P. microgranulata sp. nov. and P. rotunda sp. nov. These fan-shaped species form a well-supported clade with P. tortilis sp. nov., a morphologically variable species exhibiting features typical of both Psammina and Semipsammina. A second clade containing Psammina sp. 3, and two species questionably assigned to Galatheammina branches at the base of this group. The genus Psammina includes another 9 described species for which there are no genetic data, leaving open the question of whether Psammina as a whole is monophyletic. Our study increases the number of xenophyophore species described from the eastern CCZ from 8 to 11, with a further 25 morphotypes currently undescribed. Many additional species of these giant foraminifera undoubtedly await discovery in abyssal settings.


Assuntos
Foraminíferos/classificação , Foraminíferos/isolamento & purificação , Água do Mar/microbiologia , Biodiversidade , Foraminíferos/genética , Foraminíferos/crescimento & desenvolvimento , Oceano Pacífico
17.
Zootaxa ; 4455(3): 589-592, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30314206

RESUMO

Xenophyophores are a group of large foraminifera, confined to deep-sea habitats below ~500 m, whose often fragile agglutinated tests may attain sizes up to 10-15 cm or more; their agglutinated tests incorporate a variety of foreign particles (termed 'xenophyae'), including mineral particles, foraminiferan and radiolarian tests, diatom frustules and sponge spicules, and form structures ranging from simple tubes, plates and rounded lumps to complex folded, branching or reticulated formations (Tendal, 1972). Xenophyophores are widely distributed around the world, particularly in the Pacific and Atlantic Oceans with comparatively few records from the Indian Ocean and from Arctic and Antarctic seas; they occur at all depths in the oceans from ~500 m to >10,900 m (Tendal, 1972, 1996) and are particularly abundant in regions of high surface production, for example beneath upwelling zones, or on seamounts and sloped topography where particle flux is high (Levin and Gooday, 1992). There are scant records regarding xenophyophores in the SE Pacific. Species of the order Stannomida are recorded from the Ecuador and Peru margins (north of ~12°S) (Tendal 1972: Figs 18, 19), while species of the order Psamminida are common in the DISCOL experimental area of the Peru Basin (~7° 4'S, 88° 28'W; ~4150 m depth). Maybury and Evans (1994) illustrated two specimens of an undescribed Psammina species collected during the 1989 DISCOL campaign, but otherwise these collections remain largely unpublished.


Assuntos
Foraminíferos , Rhizaria , Animais , Regiões Antárticas , Regiões Árticas , Oceano Atlântico , Chile , Oceanos e Mares
18.
Sci Rep ; 8(1): 12103, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108286

RESUMO

Xenophyophores, giant foraminifera, are distinctive members of the deep-sea megafauna that accumulate large masses of waste material ('stercomare') within their agglutinated tests, and organise their cells as branching strands enclosed within an organic tube (the 'granellare' system). Using non-destructive, three-dimensional micro-CT imaging we explored these structures in three species from the abyssal eastern Pacific Clarion-Clipperton Zone (CCZ). In Psammina spp., the low-density stercomare occupied much of the test interior, while high-density granellare strands branched throughout the structure. In Galatheammina sp. the test comprised a mixture of stercomare and test particles, with the granellare forming a web-like system of filaments. The granellare occupied 2.8-5.1%, the stercomare 72.4-82.4%, and test particles 14.7-22.5%, of the 'body' volume in the two Psammina species. The corresponding proportions in Galatheammina sp. were 1.7% (granellare), 39.5% (stercomare) and 58.8% (test particles). These data provide a potential basis for estimating the contribution of xenophyophores to seafloor biomass in areas like the CCZ where they dominate the megafauna. As in most xenophyophore species, the granellare hosted huge numbers of tiny barite crystals. We speculate that these help to support the extensive granellare system, as well as reducing the cell volume and lightening the metabolic burden required to maintain it.


Assuntos
Organismos Aquáticos/citologia , Biodiversidade , Foraminíferos/citologia , Organismos Aquáticos/ultraestrutura , Foraminíferos/ultraestrutura , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Oceano Pacífico , Microtomografia por Raio-X
19.
Protist ; 169(2): 235-267, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649777

RESUMO

Vanhoeffenella is a common deep-sea monothalamous foraminifer, some species of which have a unique eye-like test morphology. Owing to its world-wide distribution, it has been recorded numerous times since the "heroic age" of the deep-sea exploration in the early 20th century. So far, only 4 species have been described, and no attempts have been made to estimate the real diversity of this peculiar genus. Over the last fifteen years, we have collected specimens of Vanhoeffenella from various deep-sea areas, providing the basis for an integrative taxonomy and biogeography of this genus. Here, we clarify the phylogenetic position of Vanhoeffenella and give an account of its diversity in the Atlantic, Arctic and Southern Oceans (the Weddell Sea) as revealed by genetic marker (SSU rDNA) and morphology. Our study shows that Vanhoeffenella branches within Clade F of monothalamids and incorporates at least 10 putative species. Some could be distinguished by either morphological or molecular features, but only the integrative taxonomic approach provides a robust way to assess their diversity. We examine the new material of the type species (V. gaussi Rhumbler), redescribe the poorly-known V. oculus Earland and describe formally a fifth species, V. dilatata sp. nov.


Assuntos
Foraminíferos/genética , Regiões Árticas , Oceano Atlântico , Biodiversidade , DNA Ribossômico/genética , Foraminíferos/classificação , Filogenia
20.
Front Microbiol ; 8: 1696, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28943866

RESUMO

Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m) in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity) affiliated with JTB255 (Gammaproteobacteria) and Rhodospirillaceae (Alphaproteobacteria) had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...